
Kernels for Generalized
Multiple-Instance Learning
Qingping Tao, Stephen D. Scott, N.V. Vinodchandran,

Thomas Takeo Osugi, and Brandon Mueller

Abstract—The multiple-instance learning (MIL) model has been successful in numerous application areas. Recently, a generalization

of this model and an algorithm for it have been introduced, showing significant advantages over the conventional MIL model on certain

application areas. Unfortunately, that algorithm is not scalable to high dimensions. We adapt that algorithm to one that uses a support

vector machine with our new kernel k^. This reduces the time complexity from exponential in the dimension to polynomial. Computing

our new kernel is equivalent to counting the number of boxes in a discrete bounded space that contain at least one point from each of

two multisets. We first show that this problem is #P-complete and then present a fully polynomial randomized approximation scheme

(FPRAS) for it. We then extend k^ by enriching its representation into a new kernel kmin and also consider a normalized version of k^
that we call k^=_ (which may or may not be a kernel but whose approximation yielded positive semidefinite Gram matrices in practice).

We then empirically evaluate all three measures on data from content-based image retrieval, biological sequence analysis, and the

Musk data sets. We found that our kernels performed well on all data sets relative to algorithms in the conventional MIL model.

Index Terms—Kernels, support vector machines, generalized multiple-instance learning, content-based image retrieval, biological

sequence analysis, fully polynomial randomized approximation schemes.

Ç

1 INTRODUCTION

DIETTERICH et al. [3] introduced the multiple-instance
learning (MIL) model motivated by the problem of

predicting whether a molecule would bind at a particular
site. Since the shape of a molecule largely determines
binding affinity, they represented each molecule by a high-
dimensional vector that describes its shape and labeled
molecules that bind at a site as positive examples and those
that do not as negative. Then, their algorithm learned an
axis-parallel box that distinguishes the positives from the
negatives. The motivation for the MIL model is the fact that
a single molecule can have multiple conformations (shapes)
and only one conformation needs to bind at the site for the
molecule to be considered positive. Thus, when an example
is negative, all conformations in it are negative, but if an
example is positive, then at least one conformation of the set
is positive and the learner does not know which one(s).
Since its introduction, the MIL model has been applied to
content-based image retrieval (CBIR) [4], [5], [6], [7], [8],
where each instance in a multi-instance example (bag)
represents a feature of an image and it is not known which
feature corresponds to the content the user wants to
retrieve. As with binding prediction, the MIL model used

for CBIR typically assumes that the label of a bag is a
disjunction of the labels of the instances in the bag, i.e., a
bag is labeled positive if and only if at least one of its
instances is labeled positive by the target function (typically
assumed to be a single point or a single axis-parallel box).

Recently, Scott et al. [9] have generalized the MIL model,
allowing an example’s label to be represented in a much
more general fashion than as a simple disjunction.
Specifically, in Scott et al.’s generalization, the target
concept can stipulate that, in order to be positive, an
example must have points near each of a set C of points and
not near each of a set �C of points. Note that bag labels in the
conventional (disjunctive) MIL model are exactly deter-
mined solely by the labels of the individual instances of
each bag. In contrast, this information is insufficient to
determine a bag’s label in Scott et al.’s generalization. This
is because their model bases its bag labels on how many
target points are “hit” or “missed.”

Scott et al. then adapted an algorithm by Goldman et al.
[10] to learn concepts in this new model. They empirically
evaluated this algorithm (referred to here as GMIL-1) on
problems from robot vision, CBIR, binding affinity, and
biological sequence analysis. In all experiments, GMIL-1 was
competitive with algorithms from the conventional MIL
model. Further, on problems requiring the labeling function
to be more general than a disjunction, GMIL-1 showed a
significant advantage in generalization performance.

GMIL-1 works by first explicitly enumerating all axis-
parallel boxes in the space f0; . . . ; sgd, where d is the
number of dimensions and sþ 1 is the number of discrete
values in each dimension. Then, it assigns Boolean
attributes to these boxes and gives these attributes to
Littlestone’s algorithm Winnow [11], which learns a linear
threshold unit. The time complexity of this algorithm is
exponential in d, which obviously limits the applicability of
GMIL-1. Although there has been progress in developing

2084 IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, VOL. 30, NO. 12, DECEMBER 2008

. Q. Tao is with GC Image, LLC, 216 N. 11th St., Suite 302, Lincoln, NE
68505.

. S.D. Scott and N.V. Vinodchandran are with the Department of Computer
Science, 256 Avery Hall, University of Nebraska, Lincoln, NE 68588-0115.
E-mail: {sscott, vinod}@cse.unl.edu.

. T.T. Osugi is with Sphere Communications, 300 Tri-State International
Dr., Suite 150, Lincolnshire, IL 60069.

. B. Mueller is with Gallup, Inc., 1001 Gallup Drive, Omaha, NE 68102.

Manuscript received 23 Jan. 2007; revised 30 Sept. 2007; accepted 3 Dec.
2007; published online 27 Dec. 2007.
Recommended for acceptance by B. Triggs.
For information on obtaining reprints of this article, please send e-mail to:
tpami@computer.org, and reference IEEECS Log Number TPAMI-0039-0107.
Digital Object Identifier no. 10.1109/TPAMI.2007.70846.

0162-8828/08/$25.00 � 2008 IEEE Published by the IEEE Computer Society

heuristics to significantly speed up this algorithm in
practice [12], the algorithm is still limited in its scalability.
For example, the popular multi-instance benchmark data
set Musk has more than 160 dimensions, yielding more than
10600 features for Winnow to process.

A popular means to implement exponentially large feature
mappings is to use a support vector machine with a kernel
that implicitly performs the mapping. We show that a kernel
k^ exists that exactly corresponds to the feature mapping
used by GMIL-1. To compute the kernel, one takes two bags of
points P and Q and counts the number of boxes defined on
f0; . . . ; sgd that contain at least one point from P and at least
one point from Q. We first show that this problem is #P-
complete and then present a fully polynomial randomized
approximation scheme (FPRAS) for it. Since the values of k^
can be quite large, we also consider a normalized version of
k^, which we call k^=_ðP;QÞ ¼ k^ðP;QÞ=k_ðP;QÞ. That is,
we divide the number of boxes containing a point from bags
P and Q (given by k^) by the number containing a point
from P or Q (given by k_). The intuition behind this is to
reduce inflated counts caused by large bags. As with k^,
k^=_ is #P-complete to compute and has an FPRAS. It is
unknown if k^=_ is a true kernel, although most of the
approximate Gram matrices that we computed were
positive semidefinite.

A potential issue with our methods is that, even when the
kernel is positive semidefinite, our approximations may not
be. We show this in our experimental results, where,
depending on the quality of the approximation, the number
of negative eigenvalues of the resulting Gram matrix varied
from 0 percent to nearly 26 percent of the total number of
eigenvalues. However, this posed no trouble for the SVM that
we used in our experiments; in fact, the SVM with our kernel
approximations frequently performed competitively (and
often outperformed) with other methods on the same data.
Indeed, there are other examples of successful use in SVMs of
similarity measures that are not positive semidefinite, such as
the sigmoid (hyperbolic tangent) function [13]. Further, in his
detailed geometric study of SVMs with kernels that are not
positive semidefinite, Haasdonk [14] showed that such SVMs
can still be very effective learning algorithms. He starts by
defining a pseudo-Euclidean (pE) space and formulating a
(nonconvex) SVM-like optimization problem whose solu-
tion(s) bisect the line segment(s) connecting the two closest
points from the convex hulls of the positive and negative
training examples in the pE space. He then goes on to relate
solutions to this problem to that discovered by a conventional
SVM. This gives further evidence that SVMs can be successful
with kernels that are not positive semidefinite, especially if
the negative eigenvalues of the Gram matrix are relatively
small in number and magnitude, which is the case for our
approximate kernels.

Scott et al.’s GMIL model could be further generalized
along the lines of Weidmann et al. [15]. Another of our
contributions is a new remapping that generalizes Weid-
mann et al.’s “count-based” GMIL model and a kernel kmin

that corresponds to that mapping. We then show that, as
with k^, kmin is #P-complete to compute, so we give an
FPRAS for it. In evaluating kmin on the same data sets as k^
and k^=_, we found that kmin can generalize better than k^
for a learning task in CBIR, but there is little room for
improvement in the other learning tasks that we tested.

Our approach to learning in this generalized multiple-
instance setting is to use our specialized kernels with
standard SVMs that are designed for single-instance
learning. Andrews et al. [16] use an alternative approach
in the conventional MIL model, which is to reformulate an
SVM optimization problem to directly operate on multiple-
instance data. They do this by leveraging the definition of
conventional MIL: All instances in a negatively labeled bag
are themselves negative and at least one instance of each
positively labeled bag is itself positive. Andrews et al. thus
assign each individual instance a tentative label and then
use these tentative labels in a conventional SVM optimiza-
tion problem with the additional (integer) constraints that at
least one instance per positive bag is positive.

The approach by Andrews et al. has the advantage of
allowing for any single-instance kernel (for example,
Gaussian) to be used. However, it is not clear if an SVM
can be reformulated in a similar fashion for Scott et al.’s or
Weidmann et al.’s generalized MIL models. This is because
their models have multiple target points and the target
concept is defined by how many times each target point is
“hit.” Thus, even if one knew exactly the individual label of
each instance (that is, whether it was “near” a target point),
one could not infer the bag’s label merely from that
information. This makes it difficult to capture the necessary
information in the form of additional constraints in an
optimization problem.

The rest of this paper is organized as follows: In Section 2,
we introduce some notation. In Section 3, we describe the
conventional MIL model and then present Scott et al.’s
generalization of it, as well as their algorithm GMIL-1. Then,
in Section 4, we present our kernel-based reformulation of
GMIL-1. We show that computing this kernel is equivalent to
counting the number of boxes that contain at least one point
from both sets P andQ, a problem that we formally define in
Section 5 as #BOXAnd. We then give k^=_, our normalized
version ofk^, in Section 6. In Section 7, we presentkmin. In all of
these sections, we show that computing the kernels is #P-
complete and give FPRASs for them. In Section 8, we describe
experimental results of our new kernels on the applications of
CBIR, protein sequence identification, and the Musk data
sets. Our experiments measure the time required to run our
approximation algorithms, whether the computed Gram
matrices are positive semidefinite, and the generalization
performance of an SVM using our methods. Finally, we
conclude in Section 9.

2 NOTATION AND DEFINITIONS

LetX denote f0; . . . ; sgd (though our results trivially general-

ize to X ¼
Qd

i¼1f0; . . . ; sig). Let BX denote the set of all axis-

parallel boxes1 fromX . We uniquely identify any box b 2 BX
as a pair ðb‘; buÞ, where b‘ is the “lower left” corner, and bu is

the “upper right” corner. A point p is in box b if and only if

b‘ � p � bu, where the inequality must hold for each

dimension of b‘, p, and bu. There are sþ 1 possible values

for each corner, so the number of intervals in each

dimension is sþ1
2

� �
þ sþ 1 since we allow degenerate

(empty) intervals. Thus, jBX j ¼ ð sþ1
2

� �
þ sþ 1Þd ¼ sþ2

2

� �d
.

TAO ET AL.: KERNELS FOR GENERALIZED MULTIPLE-INSTANCE LEARNING 2085

1. This includes degenerate boxes, that is, those with size 0 in one or
more dimensions.

Prior work in this generalization [10], [9], [12] used X ¼
f0; . . . ; sgd rather than X ¼ IRd since enumeration of the
boxes was needed. In our work, our kernels count the
number of boxes from BX that contain points from the given
bags. Thus, we also use X ¼ f0; . . . ; sgd to ensure that jBX j
is finite. This does not pose a problem since, in the data
from our (and in prior) experimental work, it is straightfor-
ward to discretize and bound the instance space as follows:
For each dimension i 2 f1; . . . ; dg, scale up each real value
by a fixed power of 10 to a desired precision2 and then
round them to integers. Finally, translate each axis to
f0; . . . ; sg. (One should also represent the values �1 and
þ1 to accommodate points that lie outside the bounding
box of the training data.)

For multisets (bags) P;Q � X , let BðP Þ denote the set of
boxes in BX that contain a point from P and BðP ^QÞ
denote the set of boxes in BX that contain a point from P
and a point from Q. When P and Q contain single points,
then we will omit set notation. For example, Bðfpg ^ fqgÞ
will be denoted Bðp ^ qÞ.

We will use vector notation to refer to points in X only
when it is necessary (for example, in Section 5.1); otherwise,
we will just use lowercase letters to refer to points in X . The
notion of approximation that we use is defined as follows:

Definition 1. Let f be a counting problem. Then, a randomized

algorithm A is an FPRAS if, for any instance x and

parameters �; � > 0,

Pr jAðxÞ � fðxÞj � �fðxÞ½ � � 1� �

and A’s runtime is polynomial in jxj, 1=�, and 1=�. Further,

we call AðxÞ an �-good approximation of fðxÞ.

We make frequent reference to the complexity class #P
and to #P-completeness.

Definition 2. We say that a function f : f0; 1g� ! IN is in the

counting complexity class #P if there is a nondeterministic

polynomial-time Turing machine M so that, for any

x 2 f0; 1g�, fðxÞ ¼ the number of accepting computations

of M on input x. We say f is #P-complete if 1) f 2 #P and

2) for all g 2 #P , there is a deterministic polynomial-time oracle

Turing machine that computes g using oracle queries to f .

From the definition, it follows that if a function is
#P-complete, then it is also NP-hard. Thus, it is unlikely that
#P-complete problems have efficient algorithms. Typically,
the counting version of an NP-complete problem is also
#P-complete (for example, #SAT, which counts the number
of satisfying assignments of a Boolean formula, is a
standard #P-complete problem). However, there are
#P-complete problems whose decision version is efficiently
solvable. In particular, we will use one such problem,
#MDNF (given a monotone DNF formula, output the
number of satisfying assignments), in our reductions. For
more detail on #P-completeness and related topics, see
Papadimitriou [17] or Du and Ko [18]. Finally, for simplicity
in our time complexity analyses, we assume that arithmetic
operations take constant time.

3 MULTIPLE-INSTANCE LEARNING

In the original MIL model [3], each example P is a bag
(multiset) of instances and P is given a label of positive if
and only if at least one of the instances in P is labeled
positive (it is unknown which instance(s) in P are labeled
positive). Typically, the label of a point p 2 P is determined
by its proximity to a target point c. Since its introduction,
the MIL model has been extensively studied [16], [19], [5],
[4], [21], [22], [20], [23], [24], [16], [6], [7], [8], [25], [26], [27],
[28], [29], along with extensions for real-valued labels [30],
[31]. Primary applications include molecular binding
affinity (related to drug discovery), CBIR, and text
classification. In general, problems in the original MIL
model have been approached in two distinct ways: 1) with
the goal of inferring a classifier that can label individual
instances within a bag and 2) with the goal of inferring a
classifier that operates only on entire bags. In the original
MIL model, a solution for 1) implies a solution for 2).
However, as we describe below, this may not be the case for
more general MIL models, where a bag’s label is not a
simple disjunction of instance labels, but is, instead, a
function over the instance labels that in itself must be
learned. Our work falls under category 2).

In most MIL work, it is assumed that a bag is labeled
positive if and only if at least one of its instances is labeled
positive by the target function, where the target function is
typically assumed to be a single point or a single axis-
parallel box. Exceptions include some work by Maron et al.
[20], [4] and Ray and Craven [32] in which a target concept
can be a disjunction over multiple points. In addition (in a
subset of their experiments), Maron et al. [20], [4] mapped
each pair of instances to a new instance and added spatial
information about the instance pair, which defined a
pairwise-conjunctive type of learning model. However,
they found that allowing more than two disjuncts in the
target concept or taking more than two instances at a time
proved computationally very difficult.

In other work, De Raedt [33] generalized MIL in the context
of inductive logic programming and defined an interesting
framework connecting many forms of learning. One of his
generalizations allowed relations between instances. How-
ever, the transformations given by De Raedt between the
models had exponential time and space complexity.

Scott et al. [9] generalized the MIL model such that,
rather than P ’s label being a disjunction of the labels of
the instances in P , the label is represented by a threshold
function. In contrast to the conventional MIL model, in
their model, the target concept is defined by two sets of
points. Specifically, they defined their concepts by a set of
k “attraction” points C ¼ fc1; . . . ; ckg and a set of
k0 “repulsion” points �C ¼ f�c1; . . . ; �ck0 g. Then, the label for
a bag P ¼ fp1; . . . ; png is positive if and only if there is a
subset of r points C0 � C [�C such that each attraction point
ci 2 C0 is near some point in P (where “near” is defined as
within a certain distance under some weighted norm) and
each repulsion point �cj 2 C0 is not near any point in P .
Here, r is a threshold indicating the minimum number of
target points from C [�C that must each be “hit” by some
point from P (if from C) or “missed” by all points from P (if
from �C).

In other words, if one defines a Boolean attributeai for each
attraction point ci 2 C that is 1 if there exists a pointp 2 P near
it and 0 otherwise, and another Boolean attribute �ai for each

2086 IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, VOL. 30, NO. 12, DECEMBER 2008

2. In our experiments, we did not rescale the CBIR or Musk data; we
scaled the Protein data by a factor of 10.

repulsion point �cj 2 �C that is 1 if there is no point fromP near
it, thenP ’s label is an r-of-ðkþ k0Þ threshold function over the
attributes (so there are kþ k0 relevant attributes, andP ’s label
is 1 if and only if at least r of these attributes are 1).

The boosting-based algorithm of Auer and Ortner [28]
builds an ensemble of weak hypotheses, each of which is an
axis-parallel box or a ball. In this way, their algorithm
works in a generalized MIL model similar to that of Scott
et al. in that hypotheses are linear combinations of features
that indicate whether a box (or ball) contains a point from a
bag. The main difference is that, in Scott et al.’s (and our)
algorithms, all possible boxes are considered, whereas with
that of Auer and Ortner, only a relatively small subset of
boxes is used. Because of this, our algorithms tend to search
for repulsion points (regions where no positive bags can
have points) and attraction points, whereas Auer and
Ortner’s algorithm does not search for repulsion points.

Recently, Chen et al. [34] have approached MIL by
representing bags in a new feature space derived by the
instances of the training bags. Each bag i was represented as
an N-dimensional vector (N is the number of instances from
all bags), where the jth dimension of the vector is a measure
of similarity between bag i and the jth instance of the
training bags (assuming all instances are represented in an
ordered list, independent of their bags). They then applied a
1-norm SVM method to select the relevant features. This
implicitly captures a generalization of MIL.

Independently of Scott et al., Weidmann et al. [15]
defined their own generalizations of the MIL model. The
first (presence-based MIL) is the same as Scott et al.’s model
with r ¼ k and no repulsion points. Their second (threshold-
based MIL) generalizes presence-based MIL by requiring
each ci 2 C to be near at least ti distinct points from P for P
to be labeled positive, where ti is a nonnegative integer that
is part of the definition of the target concept. Their third
model (count-based MIL) generalizes threshold-based MIL
by requiring the number of distinct points from P that are
near ci to be at least ti and at most zi. Count-based MIL can
represent the idea of repulsion points by setting zi ¼ 0 for
each repulsion point. Thus, this model generalizes the one
by Scott et al. when r ¼ kþ k0. However, the ability of Scott
et al.’s model to represent r-of-ðkþ k0Þ threshold concepts
for r < kþ k0 expands its representational ability beyond
the scope of the generalizations of Weidmann et al.

When they introduced their generalized MIL model,
Scott et al. also gave an algorithm (GMIL-1) for it. GMIL-1 is
adapted from an algorithm by Goldman et al. [10] (which
itself is built on the “virtual threshold gates” technique of
Maass and Warmuth [35]) and Scott et al. applied it to
various application areas. In all tests, GMIL-1 was compe-
titive with (and often superior to) the MIL algorithms
Diverse Density (DD) [20] and EMDD [24]. GMIL-1’s
advantage was most clear when there was no way to
represent a target concept in the original MIL model.

GMIL-1 can be summarized as follows: It operates in a

d-dimensional, discretized instance space3 X . GMIL-1 enu-

merates the set BX of all possible boxes in X and creates an

attribute ab for each box b 2 BX . Given a bag P 2 Xn, the

algorithm sets ab ¼ 1 if some point from P lies in b and ab ¼ 0

otherwise. To capture the notion of repulsion points, they

also defined complementary attributes �ab ¼ 1� ab. These

N ¼ 2jBX j attributes are given to the algorithm Winnow [36],

which learns a linear threshold unit. Winnow maintains a

weight vector ~w 2 IRN
þ (N-dimensional positive real space),

initialized to all 1s. Upon receiving input ~xi 2 ½0; 1�N ,

Winnow makes its prediction ŷi ¼ þ1 if ~w �~xi � � and 0

otherwise (� > 0 is a threshold). Given the true label yi, the

weights are updated as follows: ~w ¼ ~w�~xiðyi�ŷiÞ for some

� > 1. The pseudocode4 for GMIL-1 is in Table 1.
Unfortunately, the time complexity of GMIL-1 is linear in

N , which is exponential in d. Later, Tao and Scott [12]
developed heuristics to build a smaller number of groups in
Line 4 in Table 1 while compromising accuracy very little.
This new Winnow-based algorithm (GMIL-2) requires
significantly less time and memory than GMIL-1 in practice,
with small (if any) increases in prediction error. However, it
still has time complexity exponential in d, so it cannot be
applied to, for example, Musk data, which has d > 160.

4 KERNEL-BASED REFORMULATION OF GMIL-1

The time complexities of GMIL-1 and GMIL-2 depend on
jGj, the number of groups that BX is partitioned into. This is
influenced by the number of clusters created in Line 3 in
Table 1. The larger the number of representative points
added to S0, the higher the resolution that the algorithm has
to differentiate between points in S. However, the number
of groups grows with jS0jd. Thus, the only way to scale the
algorithm to the high-dimensional Musk data is to make jS0j
so small that there are not enough groups to differentiate
well between points in the input space, making learning
impossible.

An alternative to GMIL-1’s exponentially large feature
mapping is to use a support vector machine [38], [39], [40]

TAO ET AL.: KERNELS FOR GENERALIZED MULTIPLE-INSTANCE LEARNING 2087

TABLE 1
The Algorithm GMIL-1 from Scott et al. [9]

Goldman et al. [10] discuss how to partition the set of boxes in Line 4,
which is done to speed up the algorithm. BX ¼ the set of all axis-parallel
boxes in X .

3. The discretization is performed as described in Section 2.
4. In the table, we omit a postprocessing heuristic since it is not relevant

to our work.

with a kernel that implicitly performs the mapping. We will
show that computing such a kernel on two bags P and Q
corresponds to counting the number of boxes that contain at
least one point from each of P and Q. After we show that
this problem is #P-complete, we develop an FPRAS for it.

First, recall the mapping of GMIL-1. GMIL-1 enumerates
the set BX of all possible boxes in X and creates an attribute
ab for each box b 2 BX . Given a bag P 2 Xn, the algorithm
sets ab ¼ 1 if some point from P lies in b and ab ¼ 0
otherwise. To capture the notion of repulsion points, they
also defined complementary attributes5 �ab ¼ 1� ab. This
leads to the following observation.

Observation 1. Consider two bags P;Q � X and a mapping
~�^ðP Þ ¼ ða1; . . . ; aNÞ, where ai ¼ 1 if the corresponding box
bi 2 BX contains a point from P and 0 otherwise. Then, when
using an SVM rather than Winnow for learning, the
remapping used by GMIL-1 corresponds to using the kernel

k^ðP;QÞ ¼ ~�^ðP Þ � ~�^ðQÞ ¼ jBðP ^QÞj;

where BðP ^QÞ is the set of boxes that contain a point from P
and contain a point from Q.

Proof. Since ~�^ðP Þ and ~�^ðQÞ are binary vectors, their dot
product is simply the number of 1s in corresponding
positions. Since a bit from ~�^ðP Þ is 1 if and only if the
corresponding box contains a point from P , the value of
k^ðP;QÞ is obviously jBðP ^QÞj. Finally, k^ðP;QÞ is a
kernel by definition. tu

Of course, switching from Winnow to an SVM changes
the regularizer used in learning: Winnow’s multiplicative
weight updates imply a relative entropy regularizer,
whereas a support vector machine uses one based on the
square of the 2-norm. Such a change in regularizer can have
a significant impact on the upper bounds on generalization
error, especially when the target weight vector is sparse
[41], [42], [43], [44], which is likely the case with our target
weight vector (that is, we expect only a handful of the set of
possible boxes to be relevant). However, with the exception
of Takimoto and Warmuth [45], it is not known how to
efficiently run kernel-based algorithms with multiplicative
weight updates. Further, in our case, as with many others,
the gain in efficiency far outweighs the change in error
bound. As it turns out, our experimental results show an
improvement in performance of the SVM using our kernels
over the Winnow-based algorithms, despite the change in
error bound.

5 THE BOX-COUNTING PROBLEM #BOXAnd

From Observation 1, we now see that, by switching from
multiplicative weight updates (Winnow) to additive up-
dates (SVM), one can efficiently scale GMIL-1 and GMIL-2
to handle high-dimensional data if we can efficiently
compute the kernel k^. This kernel corresponds to the
box-counting problem that we call #BOXAnd, which we
now define. The input to the problem is a triple hX ; P ;Qi.
The problem #BOXAnd is to compute jBðP ^QÞj: the
number of boxes in BX that contain at least one point from

each of P and Q. In this section, we prove that #BOXAnd is
#P-complete and then we present an FPRAS for it.

5.1 Hardness Result for #BOXAnd

We prove that the counting problem #BoxAND is
#P-complete.

Theorem 2. #BOXAnd is in #P.

Proof. We design a nondeterministic polynomial-time
Turing machine, which, on input ðX ; P ;QÞ (an instance
of #BoxAND), has the number of accepting computations
equal to the number of boxes in BX that contain a point
from P and a point from Q. Consider the nondetermi-
nistic machine M that, on input ðX ; P ;QÞ, first guesses a
box b 2 BX and then accepts if and only if there is a point
in P that is also in b and a point in Q that is also in b. The
machine M takes only linear time and the number of
accepting paths of M is equal to the number of boxes that
contain a point from P and a point from Q, which is
jBðP ^QÞj. tu

Theorem 3. #BOXAnd is #P-complete.

Proof. We just established that #BOXAnd is in #P. We prove
that #BoxAND is #P-complete by reducing from the
monotone DNF counting problem (#MDNF), shown to be
#P-complete by Valiant [46]. An instance of #MDNF is a
monotone Boolean formula F (that is, with no negated
literals) in disjunctive normal form and an algorithm for
this problem is to output the number of satisfying
assignments of F .

We need the following notation: Let F be a monotone
DNF formula in n variables with m monotone terms
t1; t2; . . . ; tm. Let SðF Þ denote the set of all satisfying
assignments of F . Then, SðF Þ ¼

S
i SðtiÞ. Each monotone

term t can be identified with an n-bit binary vector ~vt as
follows: ~vt ¼ v1v2 . . . vn, where vi ¼ 1 if xi 2 t and vi ¼ 0 if
xi 62 t. Then, since t is monotone, the set of satisfying
assignments for t is SðtÞ ¼ f~a j~a � ~vtg. (For two n-bit
vectors ~u ¼ ðu1; u2; . . . ; unÞ and ~v ¼ ðv1; v2; . . . ; vnÞ, ~u � ~v
if and only if ui � vi for all 1 � i � n.)

We will reduce #MDNF to a special case of

#BOXAnd, where X ¼ Hn ¼ f0; 1gn. The reduction

f takes a formula F ¼
W

1�i�m ti and maps it to

an instance fðF Þ ¼ hHn; P;Qi, where P ¼ f~0g and

Q ¼ f~vt1 ;~vt2 ; . . . ;~vtmg.
We now argue that jSðF Þj equals the

number of solutions to hHn; P ;Qi of #BOXAnd.
Clearly, Bð~0 ^~vÞ ¼ fð~0; ~uÞ j~u � ~vg. For any term ti,
~a 2 SðtiÞ , ~a �~vti , ð~0;~aÞ 2 Bð~0 ^~vtiÞ. Thus, the num-
ber of satisfying assignments of

F ¼
[

1�i�m
SðtiÞ

�����
����� ¼

[
1�i�m

Bð~0 ^ ~vtiÞ
�����

�����
¼ jBðf~0g ^QÞj ¼ the number of solutions to hHn; P;Qi:

ut

5.2 An FPRAS for #BOXAnd

Our algorithm for estimating jBðP ^QÞj is based on the
general technique from Karp et al. [47] on the union of sets
problem. In this problem, the goal is to take a description ofm
sets B1; . . . ; Bm and estimate the size of B ¼

Sm
i¼1 Bi. Their

2088 IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, VOL. 30, NO. 12, DECEMBER 2008

5. This was done because Winnow in its standard form cannot represent
negative weights. In our kernel formulation, we only use the N attributes ab
since SVMs can represent negative weights.

algorithm is based on the idea of estimating the size of a set by
sampling. They define two efficiently samplable setsU andG,
G � U , with the guarantee that jGj ¼ j

Sm
i¼1 Bij, and jGj is at

least a polynomial fraction of jU j. Once this is guaranteed,
we can efficiently sample from U and compute the fraction
of these samples that are in G, which gives a good estimate
of jGj. The correctness of this approach follows from
Chernoff bounds.

Now, we give more details. In order to apply the
technique of Karp et al., three criteria must be satisfied:

1. For all i 2 f1; . . . ;mg, jBij must be easily computed.
2. For all i 2 f1; . . . ;mg, we must be able to sample

uniformly elements from Bi.
3. Given any s 2 B and any i 2 f1; . . . ;mg, we must be

able to easily determine if s 2 Bi.

If the above criteria are satisfied, Karp et al.’s algorithm
proceeds as follows: First, define U ¼ fðs; iÞ j s 2 Bi and 1 �
i � mg (so jU j ¼

Pm
i¼1 jBij). Define another setG ¼ fðs; iÞ j i is

the smallest index such that s 2 Big. Clearly, G � U . Notice
that, by defining G in this manner, we are avoiding double
counting and, hence, jGj ¼ jBj. Moreover, jGj � jU j=n. Karp
et al.’s algorithm runs in trials. For each trial, first, a set Bi is
chosen at random with probability jBij=jU j. Then, an
element s 2 Bi is chosen uniformly at random. These two
steps together uniformly sample a pair ðs; iÞ from U . Finally,
if ðs; iÞ 2 G, we increment a counter �; otherwise, we do
nothing. Our final estimate of jBj is jU j�=S, where S is the
number of samples drawn. The following theorem bounds
the error of this approximation.

Theorem 4 [47]. If S � 4ðjU j=jGjÞ lnð2=�Þ=�2, then

Pr½ð1� �ÞjBj � jUj�=S � ð1þ �ÞjBj� � 1� �:

We now apply Karp et al.’s result to #BOXAnd. Recall
that, for two points p; q 2 X , Bðp ^ qÞ denotes the set of
boxes that contain both p and q. Let W ¼ jBðP ^QÞj. Then,
W ¼ j

S
p2P;q2Q Bðp ^ qÞj. It is straightforward to compute

jBðp ^ qÞj. Given points p; q 2 X , let ‘ ¼ ð‘1; . . . ; ‘dÞ be the
lower corner of the bounding box of p and q, i.e., ‘i ¼
minfpi; qig for all i. Similarly, define u ¼ ðu1; . . . ; udÞ as the
upper corner. Then,

jBðp ^ qÞj ¼
Y

1�i�d
ð‘i þ 1Þ

 ! Y
1�i�d

ðs� ui þ 1Þ
 !

:

Since we can exactly compute jBðp ^ qÞj for all ðp; qÞ 2 P 	Q
and there are only n2 such sets, we can easily choose a set
Bðp ^ qÞ with probability jBðp ^ qÞj=ð

P
p2P;q2Q jBðp ^ qÞjÞ.

Further, since we can uniformly sample from
Bðp ^ qÞ by uniformly selecting lower and upper
corners, we can uniformly sample from the set
U ¼ fðp; q; cÞ j p 2 P; q 2 Q; c 2 Bðp ^ qÞg.

Note that jU j ¼
P

p2P;q2Q jBðp ^ qÞj. Now, consider all of
the pairs ðp; qÞ such that p 2 P and q 2 Q. We define a total
order
 on these pairs by sorting first by p’s index in P and
then by q’s index in Q. That is, given points pi; pi0 2 P and
qj; qj0 2 Q, we define ðpi; qjÞ
 ðpi0 ; qj0 Þ if and only if i < i0 or
i ¼ i0 and j < j0.

Consider another set G ¼ fðp; q; cÞ 2 U j there are no

pairs ðp0; q0Þ
 ðp; qÞ such that c 2 Bðp0 ^ q0Þg. Then,

jGj ¼ j
S
p2P;q2Q Bðp ^ qÞj ¼W . We check whether ðp; q; cÞ 2

G in Oðdn2Þ time by checking c against each set Bðp ^ qÞ for

all p 2 P and q 2 Q. Finally, we note

jUj ¼
X

p2P;q2Q
jBðp ^ qÞj � n2 max

p;q
jBðp ^ qÞj � n2jGj: ð1Þ

Thus, by drawing a sufficient number of samples ðp; q; cÞ
uniformly from U and incrementing � when ðp; q; cÞ 2 G, we
know that Ŵ ¼ jUj�=S is an �-good approximation of W , as
stated in the following theorem. Since the number of samples
S, the time to draw each sample, and the time to check each
sample for membership in G are all polynomial in n, d, 1=�,
and 1=�, our algorithm for #BOXAnd is an FPRAS.

Theorem 5. If S � 4n2 lnð2=�Þ=�2, then

Pr ð1� �ÞW � Ŵ ¼ jU j�=S � ð1þ �ÞW
� �

� 1� �:

Proof. Directly from application of (1) to Theorem 4. tu

Our algorithm as presented has runtimeOðn4d lnð1=�Þ=�2Þ
since it takes Oðdn2Þ steps to check each sample for member-
ship inG. However, it is possible to check for membership in
G in timeOðdnÞ. Given a triple ðpi; qj; cÞ sampled fromU , first,
check all points pi0 2 P that are contained in c. If i0 < i for
some pi0 2 c, then ðpi0 ; qjÞ
 ðpi; qjÞ and ðpi; qj; cÞ 62 G. If there
does not exist such a pi0 , then check all points qj0 2 Q that
are contained in c. Again, if j0 < j for some qj0 2 c, then
ðpi; qj0 Þ
 ðpi; qjÞ and ðpi; qj; cÞ 62 G. If no such qj0 exists, then
ðpi; qj; cÞ 2 G. This check requires time OðdnÞ, reducing the
total runtime to Oðn3d lnð1=�Þ=�2Þ.

To further reduce time complexity, we adapt Karp et al.’s
“self-adjusting coverage algorithm,” as shown in Table 2,
which is a more efficient algorithm for the union of sets
problem. The following theorem bounds the error of this
algorithm.

Theorem 6 [47]. If S � 8ð1þ �Þm lnð2=�Þ=�2, then

Pr ð1� �Þ jBj � Ŷ � ð1þ �Þ jBj
� �

� 1� �:

After making changes in Table 2, we can get a self-
adjusting coverage algorithm for #BOXAnd, as shown in
Table 3. Since m, the number of all possible sets Bðp ^ qÞ, is

TAO ET AL.: KERNELS FOR GENERALIZED MULTIPLE-INSTANCE LEARNING 2089

TABLE 2
Self-Adjusting Coverage Algorithm
for the Union of Sets Problem [47]

at most n2, we get the following theorem directly from
Theorem 6.

Theorem 7. If S � 8ð1þ �Þn2 lnð2=�Þ=�2, then

Pr ð1� �ÞjBj � Ŷ � ð1þ �ÞjBj
� �

� 1� �:

Our self-adjusting coverage algorithm only needs to check a
box for membership in Bðp ^ qÞ instead of G like in the
previous algorithm (see Step 13 in Table 3), which can be
done in time OðdÞ. Thus, we get an FPRAS for #BOXAnd
with runtime Oðn2d lnð1=�Þ=�2Þ.

5.3 Discussion

According to Observation 1, k^ðP;QÞ is a kernel since it is
the dot product of two remapped vectors, but there is no
guarantee that the Gram matrix computed by our approx-
imation algorithm is positive semidefinite. However, it is
reasonable to believe that if � is small and the original Gram
matrix has no zero eigenvalues, the approximated matrix
would not adversely affect SVM optimization. This is
corroborated by our experimental results, where we found
that the negative eigenvalues of our Gram matrices were
relatively small in number and in magnitude and that the
SVMs using our approximate kernels had very good
generalization performance.

Another observation about our kernel is that its Gram
matrix potentially can have large diagonal elements relative
to the off-diagonal elements. For example, in our Musk
experiments, the ratio of diagonal entries in the kernel
matrix to the off-diagonal entries was often around 1050. In
practice, SVMs do not work well with diagonally dominant
kernel matrices since they look like scaled versions of the
identity matrix (thus dividing each matrix value by a
constant will not fix this problem). We tried a normalized
variant of k^ that yields unit-length vectors in feature space:
k^ðP;QÞ=

ffi
k^ðP; P Þk^ðQ;QÞ

p
, but this also yielded poor

results since, again, the kernel matrix resembled the
identity matrix.

What was successful for us was applying the
technique of Schölkopf et al. [48], who propose first
using a nonlinear function to reduce the value of each
matrix element, such as a subpolynomial function

’ðxÞ ¼ signðxÞ � jxj�, with 0 < � < 1. To then get a
positive definite kernel matrix, they use the empiri-
cal kernel map �nðxÞ ¼ ðk0ðx; x1Þ; k0ðx; x2Þ; � � � ; k0ðx; xnÞÞ,
where k0ðx; xiÞ ¼ ’ðkðx; xiÞÞ. Finally, they apply the kernel
kempðx; yÞ ¼ �nðxÞ � �nðyÞ. In the empirical kernel, the set
fx1; � � � ; xng can consist of all training and testing bags
(referred to as transduction) or of only the training bags. We
applied this method with k^ to address our diagonal
dominance problem.

6 A NORMALIZED VERSION OF k^
The kernel matrices of k^ usually have entries with very
large values. For example, for the Musk data sets, each
entry is larger than 10600. These big entries can cause
overflow and other numerical problems. Thus, we now
discuss ways to reduce the magnitude of k^ besides the self-
normalizing version of k^ mentioned earlier. We present
k^=_ ¼ k^ðP;QÞ=k_ðP;QÞ, where k_ðP;QÞ is the number of
boxes that contain a point from P or a point from Q. The
intuition is that, for a large value of k^, dividing by k_ can
reduce the impact of accidental matches due to many 1s in
the remapped feature vectors caused by bags with many
points.

To compute k_ðP;QÞ, we first consider the more basic
problem #BOX, defined as follows: An instance of the
problem is a tuple hX ; P i, where P is a set of n points from
X . An algorithm should output the number of boxes in BX
that contain a point from P . That is, an algorithm for #BOX
on input hX ; P i should output jBðP Þj.
Theorem 8. #BOX is #P-complete.

Proof. First, it is clear that as in the case of #BOXAnd
(Section 5.1), #BOX is in #P. Recall that, for sets P and Q,
BðP ^QÞ denotes the set of boxes that contain a point
from P and a point from Q and BðP Þ denotes the set of
boxes that contain a point from P . In Theorem 3, we
have that computing jBðP ^QÞj is #P-complete. Since
BðP ^QÞ ¼ BðP Þ \BðQÞ, we have

jBðP ^QÞj ¼ jBðP Þ \BðQÞj
¼ jBðP Þj þ jBðQÞj � jBðP Þ [BðQÞj
¼ jBðP Þj þ jBðQÞj � jBðP [QÞj:

That is, #BOXAnd can be computed using three queries
to #BOX. Since computing #BOXAnd is #P-complete,
#BOX is #P-hard. Since #BOX is also in #P, it is
#P-complete. tu
Since k_ðP;QÞ ¼ jBðP [QÞj, computing k_ðP;QÞ is

#P-hard. We also notice that computing k_ðP;QÞ is a
special case of #BOXAnd because

jBðP [QÞj ¼ jBððP [QÞ \ ðP [QÞÞj:

A direct but less efficient method for approximating k_ðP;QÞ
is to run our algorithm from Section 5.2 to compute k^ðP [
Q;P [QÞ by drawing 4n2 lnð2=�Þ=�2 samples.

We now describe a more efficient way to approximate
Y ¼ jBðP [QÞj. Note that jBðP [QÞj ¼ j

S
p2P[Q BðpÞj and

the number of all possible setsBðpÞ is at most 2n, whereBðpÞ
denotes the set of boxes that contain the point p. It is easy to
verify that the three criteria for Karp et al.’s algorithm (see
Section 4.4.2) are satisfied in this case: 1) For any p, jBðpÞj can

2090 IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, VOL. 30, NO. 12, DECEMBER 2008

TABLE 3
Self-Adjusting Coverage Algorithm for #BOXAnd

be computed easily, 2) we can efficiently sample from BðpÞ,
and 3) given c 2 BX and p 2 P , we can efficiently check
whether c 2 BðpÞ. Therefore, by drawing 8n lnð2=�Þ=�2
samples, we will get an �-good approximation Ŷ of Y .
Table 4 gives the pseudocode for this algorithm.

It is simple to see that, if both k̂^ and k̂_ are within a
factor of � of their true values, then

1� �
1þ �

� 	
k^=k_ � k̂^=k̂_ �

1þ �
1� �

� 	
k^=k_: ð2Þ

We have not proven that k^=_ is a kernel. However, our
experimental results show that, for all of our data sets, there
is an � such that our approximation of k^=_ consistently
yields Gram matrices that are positive semidefinite. Further,
we found that SVMs using k^=_ typically have general-
ization performance competitive to that of k^.

7 A COUNT-BASED KERNEL FOR GMIL

The GMIL model used by Scott et al. and us could be
further generalized along the lines of Weidmann et al. [15],
as described in Section 3. We now introduce a new
remapping that generalizes Weidmann et al.’s “count-
based” MIL model and a kernel kmin that corresponds to
that mapping. We then show that, as with k^ and k^=_, kmin

is #P-complete to compute, so we give an FPRAS for it. We
found that kmin can generalize better than k^ for a learning
task in CBIR, but there is little room for improvement in the
other learning tasks we tested.

7.1 Extending k^ to kmin

We now extend k^ to work in a model that generalizes the
count-based MIL of Weidmann et al. [15]. Recall that their
count-based MIL model stipulates that a bag P is positive if
and only if each concept point ci 2 C is near at least ti, and
at most zi, distinct points from P .

We define a remapping and a kernel to capture the

notion of count-based MIL but using r-of-ðkþ k0Þ threshold

concepts. Recall the old mapping of k^ (Section 4.3), where
~�^ðP Þ is a vector of jBX j bits and, for each box b 2 BX ,

attribute ab ¼ 1 if box b contains a point from bag P , and 0

otherwise. In our new mapping ~�minðP Þ, each box b 2 BX

has n bits associated with it and abi ¼ 1 if box b contains at

least i points from P and 0 otherwise. (Thus, if b contains

exactly j points from P , we have abi ¼ 1 for i � j and abi ¼ 0

for i > j.) To see how this captures count-based MIL,

imagine that there is exactly one target box b and all positive

bags have at least t and at most z� 1 points in b. A weight

vector capturing this target concept has wbt ¼ þ1, wbz ¼ �1,

all other weights 0, and a bias term of �1=2. If there are

k such target boxes b1; . . . ; bk instead, then a weight vector

capturing an r-of-k threshold function over such count-

based attributes would have wbjtj ¼ 1 and wbjzj ¼ �1 for

each 1 � j � k. If bag P has nj points inside box bj, then

box bj’s weights’ contribution to the dot product with
~�minðP Þ will be 1 if tj � nj < zj and 0 otherwise. Thus,

setting the bias term to r� 1=2 will induce a positive

prediction on bag P if and only if P ’s points successfully

“hit” at least r of the k boxes, i.e., it represents multiple

target boxes in an r-of-k threshold function. This strictly

generalizes Weidmann et al.’s model.

Let Pb � P be the set of points from P that are contained

in box b. Then, the dot product ~�minðP Þ � ~�minðQÞ is

equivalent to the kernel kminðP;QÞ that we define as

kminðP;QÞ ¼
X
b2BX

minðjPbj; jQbjÞ

¼
X

b2BðP^QÞ
minðjPbj; jQbjÞ:

ð3Þ

7.2 A Hardness Result for kmin

Consider the counting problem #BOXMin, which we define

as follows: Given a triple hX ; P ;Qi, compute kminðP;QÞ. We

will use another related problem for showing the hardness of

#BOXMin, which we now define. The problem #BOXAnd

defined in Section 5 is: Given the triple hX ; P ;Qi as input,

compute k^ðP;QÞ ¼ jBðP ^QÞj. In our proof showing that

#BOXAnd is #P-complete, we actually showed that a

restricted version where jP j ¼ 1 is #P-complete (see the proof

of Theorem 3). We call this problem #RestrictedBOXAnd.

Theorem 9. #RestrictedBOXAnd is #P-complete.

Theorem 10. #BOXMin is #P-complete.

Proof. #BOXMin is in #P: Given a triple hX ; P ;Qi, a

nondeterministic machine first guesses a b 2 X and then

computes minðjPbj; jQbjÞ. If the minimum is 0, it rejects.

Otherwise, it branches into minðjPbj; jQbjÞ paths and

accepts. It is clear that the number of accepting paths

¼ kminðP;QÞ.
We now show that, in fact, computing kminðP;QÞ

where P contains only one point is #P-complete by
reducing #RestrictedBOXAnd to the restricted version of
#BOXMin. The reduction is the identity map: An instance
hX ; fpg; Qi of #RestrictedBOXAnd is mapped to the
instance hX ; fpg; Qi of kminðP;QÞ. Then, we get

TAO ET AL.: KERNELS FOR GENERALIZED MULTIPLE-INSTANCE LEARNING 2091

TABLE 4
Self-Adjusting Coverage Algorithm for #BOX

kminðfpg; QÞ ¼
X
b2BX

minðjPbj; jQbjÞ

¼
X

b2Bðp^QÞ
minðjPbj; jQbjÞ

þ
X

b 62Bðp^QÞ
minðjPbj; jQbjÞ

¼
X

b2Bðp^QÞ
1 ¼ jBðp ^QÞj ¼ k^ðfpg; QÞ:

The third equality is due to the following: For all
b 2 Bðp ^QÞ, p 2 b and jQ \ bj � 1. Hence, the minimum
is exactly 1. For all b 62 Bðp ^QÞ, p 62 b orQ \ b ¼ �. Hence,
the minimum is 0. Therefore, computing kminðfpg; QÞ is
the same as computing jBðfpg ^QÞj, which is
#P-complete. tu

7.3 Approximating kmin

One way to approximate kmin is to approximate (3) via a
simple change to our algorithm for k^. When a sampled triple
ðp; q; bÞ 2 G, we increment � by minðjPbj; jQbjÞ instead of by 1.
Unfortunately, the best sample size bound we can get for this
technique (via Lemma 11) is S ¼ n6 lnð2=�Þ=ð2�2Þ, yielding a
time complexity of �ðn7d logð1=�Þ=�2Þ. To obtain a more
efficient way to approximate kmin, we rewrite kmin as follows:

kminðP;QÞ ¼
X
b2BX

minðjPbj; jQbjÞ

¼
X

b2BðP^QÞ
minðjPbj; jQbjÞ

¼
X

b2BðP^QÞ

jPbjjQbj
maxðjPbj; jQbjÞ

¼
X

b2BðP^QÞ

X
p2Pb;q2Qb

1

maxðjPbj; jQbjÞ

¼
X

b2BðP^QÞ

X
p2P;q2Q

Iðp 2 PbÞ Iðq 2 QbÞ
maxðjPbj; jQbjÞ

¼
X

p2P;q2Q

X
b2Bðp^qÞ

1

maxðjPbj; jQbjÞ
;

ð4Þ

where Ið�Þ ¼ 1 if its argument is true and 0 otherwise.
Now, we approximate the final line of (4). We fix each

ðp; qÞ pair and approximate that term of the summation by
uniformly sampling boxes from Bðp ^ qÞ and taking the
average of 1=maxðjPbj; jQbjÞ for each box b in the sample.
Multiplying this average by jBðp ^ qÞj gives us an approx-
imation of that term of the sum (see Table 5). To bound the
sample size required to estimate these quantities, we will
employ the Hoeffding bound.

Lemma 11 (Hoeffding). LetXi be independent random variables
all with mean 	 such that, for all i, a � Xi � b. Then, for any

 > 0, Pr½j 1

S

PS
i¼1 Xi � 	j �
� � 2e�2
2S=ðb�aÞ2 .

Since we are interested in �-good approximations, we will
use
 ¼ �	.

Theorem 12. Let k̂minðP;QÞ be our approximation of kminðP;QÞ
via approximating each term of of the last line of (4) individually,
a s d e s c r i b e d a b o v e . T h e n , a f t e r u s i n g n2ðn�
1Þ2 lnð2n2=�Þ=ð2�2Þ total samples and Oðn5d lnðn=�Þ=�2Þ total
time,

Pr
h
ð1� �ÞkminðP;QÞ � k̂minðP;QÞ � ð1þ �ÞkminðP;QÞ

i
� 1� �:

Proof. First, note that an �-good approximation of each ðp; qÞ
term of the summation yields an �-good approximation of
kminðP;QÞ. Thus, we focus on a single ðp; qÞ pair. Given
b 2 Bðp ^ qÞ, let XðbÞ ¼ 1=maxðjPbj; jQbjÞ. Then,

	 ¼ E½X� ¼ 1

jBðp ^ qÞj
X

b2Bðp^qÞ
1=maxðjPbj; jQbjÞ:

Thus, X;	 2 ½1=n; 1�. Lemma 11 says that our approx-
imation (using a sample of size S) is not �-good with a
probability of at most

2e�2�2	2Sn2=ðn�1Þ2 � 2e�2�2S=ðn�1Þ2

since 	 � 1=n. Setting this to be at most �=n2 (so we can
apply the union bound over all n2 failure probabilities)
and solving for S, we get S � ðn� 1Þ2 lnð2n2=�Þ=ð2�2Þ as
sufficient for an �-good approximation of each term.
Repeat this n2 times (once per ðp; qÞ pair) to approximate
the last line of (4). The time complexity is
Oðn5d lnðn=�Þ=�2Þ since it takes time linear in n and d to
compute each max. tu
As with k^, kmin is a kernel since it is the dot product of

two vectors. In addition, as with k^, there is no guarantee
that the kernel matrix computed by our approximation
algorithm is positive semidefinite. However, we again
found that, empirically, the approximate kernel works well
with � ¼ 0:1 and yields a Gram matrix with only about
10 percent of its eigenvalues negative. Not surprisingly, we
also found that kmin’s kernel matrix can be diagonally
dominant, so we again used Schölkopf et al.’s method to
address this.

8 EXPERIMENTAL RESULTS

To evaluate our new kernels, we tested them with SVMlight

[49] on the following learning tasks: CBIR, biological
sequence analysis, and the Musk data. Since we know of
no theoretical results assessing whether approximations to
kernels are positive semidefinite, we empirically evaluated
the effect of varying � on the resultant Gram matrices. We
also measured the effect of � on the time to build the
matrices and on generalization error.

2092 IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, VOL. 30, NO. 12, DECEMBER 2008

TABLE 5
Approximation Algorithm for #BOXMin

In our preliminary experiments, we found that � ¼ 0:1
and � ¼ 0:01 worked well without requiring excessive
amounts of time to run the approximation algorithms.
(Specifically, varying � from 0.2 down to 0.05 changed overall,
false positive, and false negative errors by at most 0.005.) We
also varied C, SVMlight’s soft margin parameter and got, by
far, the best results with C ¼ 1010, i.e., a hard margin. Thus,
unless otherwise indicated, all reported results use those
parameter values. Since our kernels require the data to lie in a
discretized, bounded space, we discretized the space using
the training data, as described in Section 2.

To compare generalization performance, we experimen-
ted with other MIL algorithms [20], [24], [28]. We also report
other results from the literature when appropriate. To
determine the impact of changing from a relative entropy
regularizer to the squared 2-norm regularizer of an SVM,
we also report results from the Winnow-based GMIL-2
algorithm [12].

8.1 Effect of Varying �

For each of the data sets Protein (m ¼ 193 examples), CBIR
ðm ¼ 900Þ, and Musk 1 ðm ¼ 92Þ, we approximated the m	
m Gram matrix for each of k^, k^=_, and kmin using values of
� of 0.2, 0.1, and 0.05. This was repeated 10 times per kernel-�
pair.6 Each of these 10 times, we measured the time
required to compute the matrix on a Macintosh with a
2.4 GHz Intel processor, then divided that time by m

2

� �
þm

to get the average time per kernel computation. These
averages were averaged over the 10 matrices. We then took
each of the 10 matrices, computed their eigenvalues, and
counted how many were negative, averaging these num-
bers across all 10 matrices. This is our measure of how close
the approximate matrices are to being truly positive
semidefinite. (In addition, the magnitude of the largest
negative eigenvalue was always at least 1,000 times smaller
than that of the largest positive eigenvalue and often even
smaller still.)

Results are in Table 6. Not surprisingly, for Protein and
CBIR, as � decreases, the percentage of negative eigenvalues
decreases, though that does not happen for Musk 1. Most

surprising is that, even though we do not know for certain
that k^=_ is a kernel, there is some value of � for which all 10
of its approximate Gram matrices are positive semidefinite.7

Regarding time complexity, we find that, for moderate
values of n (CBIR and Musk 1), the kernel computation is
fairly fast. (For example, for Musk 1, the entire 92 	 92,
� ¼ 0:2, k^ Gram matrix was approximated in about six
minutes and the 900 	 900 approximate k^ matrix for CBIR
was computed in about two hours for � ¼ 0:2. In addition,
note that an SVM optimizer would not likely need to
compute the kernel on all pairs of training instances, so
these stated Gram matrix computation times are loose
upper bounds on total SVM runtime.) For larger values of n
(Protein and Musk 2), computation can be moved offline
and is easily parallelized.

In the experiments in Table 7, the runtimes for EMDD,
DD, and Boost were about one minute per run for the CBIR
learning task and about an hour per run for GMIL-2. For
Protein, EMDD and DD required about an hour per run
(Auer and Ortner did not report runtimes for Boost). Thus,
even for � ¼ 0:2, an SVM using our kernels is slower than
the other algorithms we tested if only one run is considered.
However, Table 7 shows a significant improvement in the
generalization performance of our methods over these
others on several learning tasks, especially in total and
false negative errors. Further, once our kernels’ Gram
matrices are computed, SVM optimization takes under one
minute. Thus, since learning tasks in applications such as
CBIR, protein classification, and drug binding affinity can
be treated as a series of database queries, one could
compute an approximate Gram matrix once for the entire
database and then amortize this effort over multiple
queries. After a few hundred queries, the per-query effort
of computing the entire matrix is comparable to the
runtimes of the other algorithms.

8.2 Content-Based Image Retrieval

Maron and Ratan [4] explored the use of conventional MIL
for CBIR for images of natural scenes. The system is query by
example, where the user presents examples of desired
images and the system’s job is to determine commonalities
among them. They filtered and subsampled their images
and then extracted “blobs” (groups of m adjacent pixels),

TAO ET AL.: KERNELS FOR GENERALIZED MULTIPLE-INSTANCE LEARNING 2093

TABLE 6
Average Time (in Seconds) per Kernel Evaluation and Percentage of Eigenvalues of the m	m Gram Matrix

that Were Negative (All Gram Matrices Were of Full Rank)

Runs were repeated 10 times. For Protein, n 2 ½35; 189�, d ¼ 8, and the number of examples in the data set was m ¼ 193. For CBIR, n 2 ½2; 15�,
d ¼ 5, and m ¼ 900. For Musk 1, n 2 ½2; 40�, d ¼ 166, and m ¼ 92. Each time for k^=_ is the sum of the time to approximate k^ and the time to
approximate k_. In the table, � refers to the value of the parameter given to the algorithm. Thus, the quality of k^=_’s approximation is, in fact, less
than � (cf., (2)).

6. Exceptions: For Protein, we did not run any approximation for � ¼ 0:05
and we did not run kmin at all. This was due to the large value of n, which
was as big as 189. We also did not evaluate Musk 2 in this test since n can be
as large as 1,044. However, in experiments on generalization performance,
we did test kmin on Protein and all three kernels on Musk 2.

7. Note that, in the table, � refers to the value of the parameter given to the
algorithm. Thus, for k^=_, � ¼ 0:2 implies that each of k̂^ and k̂_ is within 0.2
of its true value, which means that, based on (2), 2k^=_=3 � k̂^=_ � 3k^=_=2.

which they mapped to a ð3mÞ-dimensional space (one
attribute per RGB pixel value). Each blob was mapped to
one point in a bag and all bags derived from query images
were labeled as positive. This was extended by Zhang et al.
[5], who compared the use of the algorithm DD [20] to
EMDD [24] on data sets preprocessed with numerous
feature extraction methods, including RGB profiling of
blobs and YCrCb (luminance-chrominance) representations
coupled with wavelet coefficients [50] to represent texture.

Some of Zhang et al.’s best results came from their
segmentation-based YCrCb (luminance-chrominance) bag
representation with wavelet coefficients. Specifically, they
divided each image into 4 	 4 blobs of pixels and
represented each blob with six features: Y, Cr, Cb, HL(Y),
LH(Y), and HH(Y), where the latter three features came
from applying Daubechies-4 wavelet transforms [50] on the
luminance component. They then segmented the image
with a k-means segmentation algorithm [51] and, for each
segment, averaged the six features, which relates each
segment to a point in the bag that corresponds to the entire
image. To improve efficiency for GMIL-2, Tao and Scott
removed the luminance value from each feature vector,
reducing the dimensionality of the feature space to 5.

We experimented with the two CBIR tasks8 used by Scott
et al. [9]. One is the “Sunset” task: to distinguish images
containing sunsets from those not containing sunsets. Like
Zhang et al. [5], Scott et al. built 30 random testing sets of
720 examples (120 positives and 600 negatives): 150 negatives
each from the Waterfall, Mountain, Field, and Flower sets.
Each of the 30 training sets consisted of 50 positives and
50 negatives.

Another CBIR task Scott et al. experimented with was to
test a conjunctive CBIR concept, where the goal was to
distinguish images containing a field with no sky from
those containing a field and sky or containing no field.

Zhang et al.’s field images that contained the sky were
relabeled from positive to negative. Each training set had
six bags each of Flower, Mountain, Sunset, and Waterfall for
negatives and had 30 Fields, six of them negative and the
rest positive. Each negative test set had 150 bags each of
Flower, Mountain, Sunset, and Waterfall. Each test set had
120 Fields, around 50 serving as positives and the
remainder as negatives.

In addition to the above two CBIR tasks, we added the
learning task “Sunset 2,” where the negative examples are
derived from images with no sunset or with a sunset with
the sun itself visible and the positive examples are derived
from images containing a sunset, but the sun itself is
hidden. We took the 30 testing/training combinations from
the sunset task and relabeled from positive to negative the
sunset bags for which the sun was visible. This relabeled
about 20-30 positive bags to negative in each training set
and about 50-60 in each testing set.

The top three rows of each table in Table 7 summarize
the prediction error of k^, k^=_, kmin, and GMIL-2 [12]. We
also give results for DD [20] and EMDD [24], which operate
in the conventional MIL model. The Sunset task fits well
into the conventional MIL model; hence, the error rates for
EMDD and DD are only about 1 percent higher than ours.
However, since the Conjunctive and Sunset 2 tasks are more
complex, we see that the GMIL model helps significantly
over conventional MIL.

In addition, results from our runs of the boosting-based
algorithm of Auer and Ortner [28] are reported. We used
axis-parallel boxes as the weak hypotheses, so their
ensembles are weighted combinations of axis-parallel
boxes, just like our hypotheses. The main difference
between their ensembles and our hypotheses is that we
use features from all of the boxes in BX , whereas theirs use
a very small subset.9 Further, our algorithm looks for both

2094 IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, VOL. 30, NO. 12, DECEMBER 2008

8. Based on data from Wang et al. [52], the Corel Image Suite, and
www.web shots.com.

9. We ran their algorithm for 2, 5, 7, 10, and 20 boosting rounds. The
results for 10 rounds are slightly better than the others, so they are the ones
reported in the table.

TABLE 7
Classification Errors and Standard Deviations for CBIR and Protein Learning Tasks

kmin, k^, and k^=_ were all approximated with � ¼ 0:1 and � ¼ 0:01. “Boost” results for Protein are from Auer and Ortner [28], “GMIL-2” results on
Sunset and Conjunctive are from Tao and Scott [12], and “GMIL-2” results on Protein are from Wang et al. [53]. All other results are from our own
experiments.

“attraction” and “repulsion” boxes, that is, for boxes that
must be hit for a bag to be positive and for ones that must be
missed. In contrast, Auer and Ortner’s algorithm only seeks
out boxes that must be hit. Based on the large gaps between
our and Boost’s false negative error rates, we infer that the
Conjunctive and Sunset 2 tasks require some sort of
repulsion points.

8.3 Identifying Trx-Fold Proteins

The low conservation of primary sequence in protein
superfamilies such as Thioredoxin-fold (Trx-fold) makes
conventional modeling methods difficult to use. Wang et al.
[53] proposed using MIL as a tool for identification of new
Trx-fold proteins. They mapped each protein’s primary
sequence to a bag, as described below.

In the QFC algorithm [54], the physicochemical properties
of the amino acids in the molecules are characterized using
various indices and standard measurements, such as GES
hydropathy index [55], [56], solubility [57], polarity, pI, Kyte-
Doolittle index [58],� helix index [59], and molecular weight.
A protein sequence is described by a set of variables x1

through xn and, for each xi, there is a value xij for the
ith amino acid index (property) value at the jth position of the
sequence. Thus, xi1 through xim constitutes a profile of the
protein in terms of the ith amino-acid property index.

Wang et al. mapped the Trx data to the MIL model in the
following way: First, they found the primary sequence
motif in each (positive and negative) sequence and
extracted a window of size 214 around it (30 residues
upstream, 180 downstream). They then mapped all se-
quences to their profiles based on the seven properties by
Kim et al. [54], yielding seven-dimensional data, which they
then smoothed with a Gaussian kernel.

Since each 7-tuple xi ¼ ðxi1; . . . ; xi7Þ in each profile is tied
to a particular residue rxi in the original sequence, they
added an eighth coordinate xi8 to xi that corresponds to
rxi ’s position in the sequence. They first aligned the
sequences based on a conserved primary sequence motif
and then they set xi8 to be the position of rxi in the
alignment.

Wang et al. used GMIL-2 in cross-validation tests: 20-fold
CV on 20 positives and 8-fold CV on 160 negatives. In each
round, they trained GMIL-2 on 19 positive proteins plus one
of the eight sets of negative proteins and tested the held-out
positive protein plus the remaining seven sets of negative
proteins. We performed the same tests with k^, k^=_, and
kmin, compared to GMIL-2, EMDD, and DD. In addition,
results from experiments by Auer and Ortner’s [28]
boosting-based MIL algorithm are reported. The results
suggest that our algorithms’ use of all boxes from BX is
causing overfitting. Restricting our kernels to counting
boxes from a subset of BX may remedy this.

An issue that arises when applying MIL to protein
identification problems is determining the eighth coordinate
xi8 for xi. In the Trx data set, a simplistic method (based on a
small motif that is known to appear in all Trx sequences) was
used to first align all of the sequences, yielding a coordinate
system for the eighth dimension. In general, such multiple
alignments are difficult or even impossible to achieve unless
the sequences are already highly similar (but, if this is the
case, then learning approaches such as hidden Markov
models are preferred). In contrast, pairwise alignments are
much easier to generate, suggesting an alternative approach.

Given two sequencesSP andSQ, we could first pairwise align
them to get the coordinate system for computing kðP;QÞ,
whereP andQ are the bags fromSP andSQ and k is one of our
kernels. Thus, rather than using a single universal coordinate
system for the eighth dimension, we could custom-build a
coordinate system for each pair of sequences. In contrast, DD,
EMDD, and Boost all require a single universal coordinate
system, which may limit their applicability.

8.4 Musk Data Sets

We tested the Musk data sets from the UCI repository,10

which represent different conformations of various mole-
cules, labeled according to whether they exhibit a “musk-
like” odor when smelled by a human expert. We performed
tenfold cross-validation experiments on the same 10 parti-
tions used by Dietterich et al. [3].

The ratio of diagonal Gram matrix entries to off-
diagonal entries was around 1050, so we applied the
method of Schölkopf et al. [48] (Section 5.3), using the
function x1=50 to reduce the range of each entry in the Gram
matrices. We then let SVMlight work with the original kernel
matrices, as well as transduction empirical kernels and
nontransduction empirical kernels. Table 8 summarizes our
results and those from the literature.

Although we see that the empirical kernels based on k^
andkmin provided some of the best results on Musk, there is no
improvement ofkmin overk^. In fact, the results exactly match,
except for a false positive error on Musk 1 for the transduction
case (not shown), in which k^ is better. One possible
explanation for this is that, since kminðP;QÞ=k^ðP;QÞ 2
½1; n� for all P;Q and the kernel is so diagonally dominant
for such high-dimensional input data, the kernel values are
too similar to each other to make a difference in training
and testing. Thus, in cases like Musk, when there is

TAO ET AL.: KERNELS FOR GENERALIZED MULTIPLE-INSTANCE LEARNING 2095

TABLE 8
Classification Errors and Standard Deviations

on the Musk Data Sets

kmin, k^, and k^=_ were all approximated with � ¼ 0:1 and � ¼ 0:01.
EMDD, mi-SVM, and MI-SVM are from Andrews et al. [16], DD is from
Maron and Lozano-Pérez [20], TLC is from Weidmann et al. [15], Boost
is from Auer and Ortner [28], MILES is from Chen et al. [34], IAPR is
from Dietterich et al. [3], and Polynomial Minimax Kernel and MI Kernel
are from Gärtner et al. [29].

10. http://www.ics.uci.edu/~mlearn/MLRepository.html.

diagonal dominance, there is probably little reason to
choose kmin over k^.

We also found that, for both the transduction and
nontransduction cases, k^=_ had better performance on
Musk 2 than kmin and k^, though this was not the case on
Musk 1. One possible reason is that Musk 2 data is not
filtered to remove highly similar conformations like Musk 1.
The sizes of bags in Musk 2, which are hundreds of points,
are much larger than those in Musk 1. The normalization
helps reduce the impact of accidental matches.

9 CONCLUSIONS

Algorithms GMIL-1 [9] and its faster variant GMIL-2 [12] in
Scott et al.’s generalization of the conventional MIL model
have enjoyed success in applications that cannot be
represented in the conventional MIL model. However, both
algorithms are inherently inefficient, preventing scaling to
higher dimensional data. We adapted their Winnow-based
algorithms to instead use a support vector machine using
our new kernel k^. We then introduced a normalized
version of k^ called k^=_ that showed improvement over k^
on certain learning tasks and generally had Gram matrices
that were positive semidefinite or at least nearly so. Finally,
we introduced a third kernel kmin that induces a remapping
that generalizes the GMIL models of Scott et al. and
Weidmann et al. [15]. We showed that each of our similarity
measures is hard to compute in general and then we
presented an FPRAS for each.

Empirical results show improvements in generalization
error for our methods over the Winnow-based GMIL-2. In
addition, k^=_ had improved performance over k^ on some
tasks and had a positive semidefinite Gram matrix for some
approximation level � for each application.

It is trivial to parallelize the computation of our kernel to
get an almost linear speedup. Further, since each learning
task in applications such as CBIR and drug binding affinity
can be treated as a database query, one could build the
kernel matrix once for the entire database and reuse it for
each query. This would amortize the cost of building the
matrix over many queries.

ACKNOWLEDGMENTS

The authors thank Tom Dietterich for his Musk partition-
ings, Qi Zhang, Sally Goldman, and James Wang for the
CBIR data (indirectly from Corel and webshots.com), Qi
Zhang for his EMDD/DD code, Ronald Ortner for his
boosting-based MIL code, and the anonymous reviewers for
their helpful comments. This research was funded in part
by US National Science Foundation Grants CCR-0092761,
CCF-0430991, and EPS-0091900. It was also supported in
part by US National Institutes of Health Grant RR-P20
RR17675. This work was completed in part utilizing the
Research Computing Facility, University of Nebraska.
Qingping Tao, Thomas Osugi, and Brandon Mueller did
this work at the University of Nebraska.

REFERENCES

[1] Q. Tao, S. Scott, N.V. Vinodchandran, and T. Osugi, “SVM-Based
Generalized Multiple-Instance Learning via Approximate Box
Counting,” Proc. 21st Int’l Conf. Machine Learning, pp. 799-806,
2004.

[2] Q. Tao, S. Scott, N.V. Vinodchandran, T. Osugi, and B. Mueller,
“An Extended Kernel for Generalized Multiple-Instance Learn-
ing,” Proc. 16th IEEE Int’l Conf. Tools with Artificial Intelligence,
pp. 272-277, 2004.

[3] T.G. Dietterich, R.H. Lathrop, and T. Lozano-Perez, “Solving the
Multiple-Instance Problem with Axis-Parallel Rectangles,” Artifi-
cial Intelligence, vol. 89, nos. 1-2, pp. 31-71, 1997.

[4] O. Maron and A.L. Ratan, “Multiple-Instance Learning for
Natural Scene Classification,” Proc. 15th Int’l Conf. Machine
Learning, pp. 341-349, 1998.

[5] Q. Zhang, S.A. Goldman, W. Yu, and J.E. Fritts, “Content-Based
Image Retrieval Using Multiple-Instance Learning,” Proc. 19th Int’l
Conf. Machine Learning, pp. 682-689, 2002.

[6] Y. Chen and J.Z. Wang, “Image Categorization by Learning and
Reasoning with Regions,” J. Machine Learning Research, vol. 5,
pp. 913-939, Aug. 2004.

[7] Z. Zhou, M. Zhang, and K. Chen, “A Novel Bag Generator for
Image Database Retrieval with Multi-Instance Learning Techni-
ques,” Proc. 15th IEEE Int’l Conf. Tools with Artificial Intelligence,
pp. 565-569, 2003.

[8] C. Yang and T. Lozano-Pérez, “Image Database Retrieval with
Multiple-Instance Learning Techniques,” Proc. 16th Int’l Conf. Data
Eng., pp. 233-243, 2000.

[9] S. Scott, J. Zhang, and J. Brown, “On Generalized Multiple-
Instance Learning,” Int’l J. Computational Intelligence and Applica-
tions, vol. 5, no. 1, pp. 21-35, Mar. 2005.

[10] S.A. Goldman, S.K. Kwek, and S.D. Scott, “Agnostic Learning of
Geometric Patterns,” J. Computer and System Sciences, vol. 6, no. 1,
pp. 123-151, Feb. 2001.

[11] N. Littlestone, “Learning Quickly When Irrelevant Attributes
Abound: A New Linear-Threshold Algorithm,” Machine Learning,
vol. 2, no. 4, pp. 285-318, 1988.

[12] Q. Tao and S. Scott, “A Faster Algorithm for Generalized Multiple-
Instance Learning,” Proc. 17th Int’l Florida Artificial Intelligence
Research Soc. Conf., pp. 550-555, 2004.

[13] B. Schölkopf, Support Vector Learning. R. Oldenbourg Verlag, 1997.
[14] T. Haasdonk, “Feature Space Interpretation of SVMs with

Indefinite Kernels,” IEEE Trans. Pattern Analysis and Machine
Intelligence, vol. 27, no. 4, pp. 482-492, Apr. 2005.

[15] N. Weidmann, E. Frank, and B. Pfahringer, “A Two-Level
Learning Method for Generalized Multi-Instance Problems,” Proc.
European Conf. Machine Learning, pp. 468-479, 2003.

[16] S. Andrews, I. Tsochantaridis, and T. Hofmann, “Support Vector
Machines for Multiple-Instance Learning,” Advances in Neural
Information Processing Systems, vol. 15, pp. 561-568, 2002.

[17] C. Papadimitriou, Computational Complexity. Addison-Wesley,
1994.

[18] D. Du and K. Ko, Theory of Computational Complexity. John Wiley &
Sons, 2000.

[19] P. Auer, “On Learning from Multi-Instance Examples: Empirical
Evaluation of a Theoretical Approach,” Proc. 14th Int’l Conf.
Machine Learning, pp. 21-29, 1997.

[20] O. Maron and T. Lozano-Pérez, “A Framework for Multiple-
Instance Learning,” Advances in Neural Information Processing
Systems, vol. 10, pp. 570-576, 1998.

[21] P.M. Long and L. Tan, “PAC Learning Axis-Aligned Rectangles
with Respect to Product Distributions from Multiple-Instance
Examples,” Machine Learning, vol. 30, pp. 7-21, 1998.

[22] A. Blum and A. Kalai, “A Note on Learning from Multiple-
Instance Examples,” Machine Learning, vol. 30, pp. 23-29, 1998.

[23] J. Wang and J.-D. Zucker, “Solving the Multiple-Instance Problem:
A Lazy Learning Approach,” Proc. 17th Int’l Conf. Machine
Learning, pp. 1119-1125, 2000.

[24] Q. Zhang and S.A. Goldman, “EM-DD: An Improved Multiple-
Instance Learning Technique,” Neural Information Processing
Systems, vol. 14, pp. 1073-1080, 2001.

[25] J. Ramon and L. de Raedt, “Multi Instance Neural Networks,”
Proc. ICML Workshop Attribute-Value and Relational Learning, 2000.

[26] P. Auer, P.M. Long, and A. Srinivasan, “Approximating Hyper-
Rectangles: Learning and Pseudo-Random Sets,” Proc. 29th Ann.
ACM Symp. Theory of Computing, pp. 314-323, 1997.

[27] H. Blockeel, D. Page, and A. Srinivasan, “Multi-Instance Tree
Learning,” Proc. 22nd Int’l Conf. Machine Learning, pp. 57-64, 2005.

[28] P. Auer and R. Ortner, “A Boosting Approach to Multiple Instance
Learning,” Proc. 15th European Conf. Machine Learning, pp. 63-74,
2004.

2096 IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, VOL. 30, NO. 12, DECEMBER 2008

[29] T. Gärtner, P.A. Flach, A. Kowalczyk, and A.J. Smola, “Multi-
Instance Kernels,” Proc. 19th Int’l Conf. Machine Learning, pp. 179-
186, 2002.

[30] D.R. Dooly, Q. Zhang, S.A. Goldman, and R.A. Amar, “Multiple-
Instance Learning of Real-Valued Data,” J. Machine Learning
Research, vol. 3, pp. 651-678, Dec. 2002.

[31] S. Ray and D. Page, “Multiple Instance Regression,” Proc. 18th Int’l
Conf. Machine Learning, pp. 425-432, 2001.

[32] S. Ray and M. Craven, “Supervised versus Multiple-Instance
Learning: An Empirical Comparison,” Proc. 22nd Int’l Conf.
Machine Learning, pp. 697-704, 2005.

[33] L. De Raedt, “Attribute-Value Learning versus Inductive Logic
Programming: The Missing Links,” Proc. Eighth Int’l Conf.
Inductive Logic Programming, pp. 1-8, 1998.

[34] Y. Chen, J. Bi, and J.Z. Wang, “MILES: Multiple-Instance Learning
via Embedded Instance Selection,” IEEE Trans. Pattern Analysis
and Machine Intelligence, vol. 28, no. 12, pp. 1931-1947, Dec. 2006.

[35] W. Maass and M.K. Warmuth, “Efficient Learning with Virtual
Threshold Gates,” Information and Computation, vol. 141, no. 1,
pp. 66-83, 1998.

[36] N. Littlestone, “Redundant Noisy Attributes, Attribute Errors, and
Linear Threshold Learning Using Winnow,” Proc. Fourth Ann.
Workshop Computational Learning Theory, pp. 147-156, 1991.

[37] F. Rosenblatt, “The Perceptron: A Probabilistic Model for
Information Storage and Organization in the Brain,” Psychological
Rev., vol. 65, pp. 386-407, 1958 (reprinted in Neurocomputing
(MIT Press, 1988)).

[38] V. Vapnik, Statistical Learning Theory, John Wiley & Sons, 1998.
[39] N. Cristianini and J. Shawe-Taylor, An Introduction to Support

Vector Machines and Other Kernel-Based Learning Methods. Cam-
bridge Univ. Press, 2000.

[40] B. Schölkopf and A.J. Smola, Learning with Kernels: Support Vector
Machines, Regularization, Optimization, and Beyond. MIT Press, 2002.

[41] M. Warmuth and S.V.N. Vishwanathan, “Leaving the Span,” Proc.
18th Ann. Conf. Learning Theory, pp. 366-381, 2005.

[42] R. Khardon, D. Roth, and R. Servedio, “Efficiency versus
Convergence of Boolean Kernels for Online Learning Algo-
rithms,” J. Artificial Intelligence Research, vol. 24, pp. 341-356, Sept.
2005.

[43] R. Khardon and R. Servedio, “Maximum Margin Algorithms with
Boolean Kernels,” J. Machine Learning Research, vol. 6, pp. 1405-
1429, 2005.

[44] T. Zhang, “Regularized Winnow Methods,” Advances in Neural
Information Processing Systems, pp. 703-709, 2000.

[45] E. Takimoto and M.K. Warmuth, “Path Kernels and Multiplicative
Updates,” J. Machine Learning Research, vol. 4, pp. 773-818, 2003.

[46] L.G. Valiant, “The Complexity of Enumeration and Reliability
Problems,” SIAM J. Computing, vol. 8, pp. 410-421, 1979.

[47] R. Karp, M. Luby, and N. Madras, “Monte-Carlo Approximation
Algorithms for Enumeration Problems,” J. Algorithms, vol. 10,
pp. 429-448, 1989.

[48] B. Schölkopf, J. Weston, E. Eskin, C. Leslie, and W.S. Noble, “A
Kernel Approach for Learning from Almost Orthogonal Patterns,”
Proc. 13th European Conf. Machine Learning, pp. 511-528, 2002.

[49] T. Joachims, “Making Large-Scale SVM Learning Practical,”
Advances in Kernel Methods: Support Vector Learning, B. Schölkopf,
C. Burges, and A. Smola, eds., chapter 11, pp. 169-184, MIT Press,
1999.

[50] I. Daubechies, “Orthonormal Bases of Compactly Supported
Wavelets,” Comm. Pure and Applied Math., vol. 41, pp. 909-996,
1988.

[51] J.A. Hartigan and M.A. Wong, “Algorithm AS136: A K-Means
Clustering Algorithm,” Applied Statistics, vol. 28, pp. 100-108, 1979.

[52] J.Z. Wang, J. Li, and G. Wiederhold, “SIMPLIcity: Semantics-
Sensitive Integrated Matching for Picture Libraries,” IEEE Trans.
Pattern Analysis and Machine Intelligence, vol. 23, no. 9, pp. 947-963,
Sept. 2001.

[53] C. Wang, S. Scott, J. Zhang, Q. Tao, D.E. Fomenko, and V.N.
Gladyshev, “A Study in Modeling Low-Conservation Protein
Superfamilies,” Technical Report TR-UNL-CSE-2004-3, Dept. of
Computer Science, Univ. of Nebraska, 2004.

[54] J. Kim, E.N. Moriyama, C.G. Warr, P.J. Clyne, and J.R. Carlson,
“Identification of Novel Multi-Transmembrane Proteins from
Genomic Databases Using Quasi-Periodic Structural Properties,”
Bioinformatics, vol. 16, no. 9, pp. 767-775, 2000.

[55] D.M. Engelman, T.A. Steitz, and A. Goldman, “Identifying Non-
Polar Transbilayer Helices in Amino Acid Sequences of Mem-
brane Proteins,” Ann. Rev. Biophysics and Biophysical Chemistry,
vol. 15, pp. 321-353, 1986.

[56] G.V. Heijne, “Membrane Protein Structure Prediction: Hydro-
phobicity Analysis and the Positive-Inside Rule,” J. Molecular
Biology, vol. 225, pp. 487-494, 1992.

[57] T. Brown, Molecular Biology Labfax, second ed. Academic Press,
1998.

[58] J. Kyte and R.F. Doolittle, “A Simple Method for Displaying the
Hydropathic Character of a Protein,” J. Molecular Biology, vol. 157,
pp. 105-132, 1982.

[59] G. Deleage and B. Roux, “An Algorithm for Protein Secondary
Structure Prediction Based on Class Prediction,” Protein Eng.,
vol. 1, pp. 289-294, 1987.

Qingping Tao received the BE degree in
computer application from Hefei University of
Technology in 1997, the ME degree in computer
software from the University of Science and
Technology of China in 2000, and the PhD
degree in computer science from the University
of Nebraska in 2004. Since then, he has been
working with GC Image, LLC, where he is
currently the vice president in charge of research
and development.

Stephen D. Scott received the BS and MS
degrees in computer science from the University
of Nebraska and the DSc degree in computer
science from Washington University in St. Louis.
He is currently an associate professor and vice
chair of the Department of Computer Science
and Engineering at the University of Nebraska.
His research interests are machine learning and
their applications to bioinformatics.

N.V. Vinodchandran received the PhD degree
from the Institute of Mathematical Sciences,
Chennai, India. He is an associate professor in
the Department of Computer Science and
Engineering at the University of Nebraska. His
research interests include computational com-
plexity theory and its applications to computa-
tional learning theory and network security. He
has published widely in theoretical computer
science journals and conferences.

Thomas Takeo Osugi received the BS and MS
degrees in computer science from the University
of Nebraska, where he did research in machine
learning and distributed systems. He is currently
working with Sphere Communications, Lincoln-
shire, Illinois. Before that, he worked in Japan
with the JET program to teach English at public
schools. He has interests in teaching, studying
the Japanese language, and playing music.

Brandon Mueller received the BS degree in computer science from the
University of Nebraska. He is currently working as a system applications
developer for Gallup, Inc., Omaha, Nebraska.

. For more information on this or any other computing topic,
please visit our Digital Library at www.computer.org/publications/dlib.

TAO ET AL.: KERNELS FOR GENERALIZED MULTIPLE-INSTANCE LEARNING 2097

